
Approved for public release; distribution is unlimited.

A COMPARATIVE ANALYSIS OF EVIDENTIAL REASONING AND CUMULATIVE SCORING
ALGORITHMS IN THE CONTEXT OF A COMBAT IDENTIFICATION APPLICATION

June 2000

A. Mahalanabis, R. N. Lobbia and C. R. Willman
Boeing Military Aircraft & Missile Systems Group

The Boeing Company, P.O. Box 3707, MS 43-14, Seattle, WA 98124

ABSTRACT

Within the discipline of Combat ID, as related to high performance fighters, a problem of
significant proportion that arises is how to determine quickly and accurately a target’s ID. Various
algorithms, many of which are proprietary, that address this problem have been developed over the
last decade. But their robustness in handling a new and unforeseen target threat environment
leaves much to be desired. In this paper we explore two candidate classes of algorithms for
achieving this objective, namely, an evidential reasoning and a cumulative scoring technique. We
present the results via a comparative analysis where we look at the problem not only from a
timeliness and accuracy of identification perspective, but also from the point of view of
computational throughput. The analysis is based on simulation results using the sensor fusion
system of a high performance fighter program. This system accomplishes the fusion of attribute
data from a diverse set of sensors in a real time, computationally constrained processing
environment. We will show some of the performance advantages evidential reasoning exhibits
over a cumulative scoring approach. This is demonstrated on a typical scenario that the fighter in
question has to show performance against. Furthermore, we will discuss a methodology for using
a by-product of the evidential reasoning algorithm as a score to help in the data association task of
assigning sensor reports to system tracks.

1.0 INTRODUCTION

Often a major obstacle in developing a coherent strategy for fusion of attribute data on a high performance
fighter program is the bewildering assortment of disparate sensors that provide attribute information. There are
several well-known strategies for attribute fusion, which are candidate algorithms for such a task. In this paper we
provide a comparative analysis of the performance of one such algorithm (the Dempster-Shafer method) and a
variant of another well established paradigm (an ad-hoc scoring method). The analysis shows the performance of
these algorithms on simulation data generated for a typical high performance fighter.

We do not, by any means, claim the superiority of one algorithm over the other. Our goal, instead, is to
discuss the application of these two algorithms on a real life program. In this context, we find that both algorithms
presented have their strengths and weaknesses. Although both algorithms seem to give about the same level of
performance with regard to “time to convergence” to unambiguous ID, the scoring method is somewhat less
computationally intensive. This however, is not a ringing endorsement of the scoring method. The analysis
presented in this paper remains preliminary in nature. More robust testing of the two methods, under more
strenuous scenario conditions must be undertaken before we can claim that one algorithm is better than the other.
This work is left for a future date. However, we can make the claim that in relatively sparse scenario environments,
the scoring method may provide an alternative to the more resource-expensive Dempster-Shafer technique.

The first step in understanding the problem one faces in the task of attribute fusion is to describe the type of
attribute information we must fuse together. We begin, thus, by describing a typical sensor suite, and the type of

REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of
law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
01-06-2000

2. REPORT TYPE
Conference Proceedings

3. DATES COVERED (FROM - TO)
xx-xx-2000 to xx-xx-2000

4. TITLE AND SUBTITLE
A Comparative Analysis of Evidential Reasoning and Cumulative Scoring Algorithms in
the Context of a Combat Identification Application
Unclassified

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Mahalanabis, A. ;
Lobbia, R. N. ;
Willman, C. R. ;

5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS
Boeing Military Aircraft & Missile Systems Group
The Boeing Company
P.O. Box 3707, MS 43-14
Seattle, WA98124

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS
Director, CECOM RDEC
Night Vision and Electronic Sensors Directorate Security Team
10221 Burbeck Road
Ft. Belvoir, VA22060-5806

10. SPONSOR/MONITOR'S ACRONYM(S)
11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE
,
13. SUPPLEMENTARY NOTES
See Also ADM201258, 2000 MSS Proceedings on CD-ROM, January 2001.
14. ABSTRACT
Within the discipline of Combat ID, as related to high performance fighters, a problem of significant proportion that arises is how to determine
quickly and accurately a target?s ID. Various algorithms, many of which are proprietary, that address this problem have been developed over
the last decade. But their robustness in handling a new and unforeseen target threat environment leaves much to be desired. In this paper we
explore two candidate classes of algorithms for achieving this objective, namely, an evidential reasoning and a cumulative scoring technique.
We present the results via a comparative analysis where we look at the problem not only from a timeliness and accuracy of identification
perspective, but also from the point of view of computational throughput. The analysis is based on simulation results using the sensor fusion
system of a high performance fighter program. This system accomplishes the fusion of attribute data from a diverse set of sensors in a real
time, computationally constrained processing environment. We will show some of the performance advantages evidential reasoning exhibits
over a cumulative scoring approach. This is demonstrated on a typical scenario that the fighter in question has to show performance against.
Furthermore, we will discuss a methodology for using a by-product of the evidential reasoning algorithm as a score to help in the data
association task of assigning sensor reports to system tracks.
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
Public Release

18.
NUMBER
OF PAGES
18

19. NAME OF RESPONSIBLE PERSON
Fenster, Lynn
lfenster@dtic.mil

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

19b. TELEPHONE NUMBER
International Area Code
Area Code Telephone Number
703767-9007
DSN
427-9007

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18

attribute information we receive from this sensor suite. We next provide a brief overview of the Dempster-Shafer
method, and the ad-hoc Scoring Method. The scoring method we employ departs significantly from the
conventional scoring techniques that are described in the literature. We describe in detail, the modifications we have
made to the theory. A brief description of the testing philosophy we employed in performing the analysis of the
simulation data follows. Interspersed with this discussion is a description of the specific scenario we utilized in our
work. We provide detailed analysis results, and discuss the implications of these results for our particular
application.

2.0 A DESCRIPTION OF THE SENSOR SUITE

A typical high performance fighter is equipped with a variety of sensor types. In continuing with our
discussion, it becomes somewhat necessary to discuss what a typical sensor suite for such a fighter might entail.
Broadly speaking, we are concerned with five distinct categories of sensors. These are Electronic Warfare (EW),
Radar Measurements, Identification Friend or Foe (IFF), Off-board sources and Contextual Data.

The EW subsystem may use a variety of different functions to return attribute data. This data is typically in
the form of a list of candidate platforms and associated confidences (say between 0 and 100). Similarly, IFF reports
provide target identification information. Unlike the EW attribute data however, IFF cannot provide confidences for
each of the candidate platforms it detects. Radar can employ Non-Cooperative Target Recognition (NCTR) to gain
attribute information on observed targets. Again, such attribute data may take the form of platforms and
confidences.

Our theoretical fighter can, in addition, rely on different sources of off-board attribute information. For
example, it may receive track level ID information from other friendly fighters via a Fighter Data Link (FDL). The
information broadcast across this data link may provide kinematic position data on other friendly fighters, or it may
provide kinematic and attribute data on targets being tracked by other friendly fighters. Another source for off-board
information may be a larger communication net, such as the Joint Tactical Information Distribution System (JTIDS).
Assuming the fighter participates in this network, it would receive track level attribute information on friendly
entities in the form of a data structure known as Precise Participant Location Information (PPLI). Both the FDL and
JTIDS PPLI are distinguished from the other sensors in the suite by the fact that they provide track level
information. As may be easily imagined, there are resulting implications for the fusion of such attribute
information. Of primary concern is that by repeatedly fusing such information, we are essentially multi-counting the
same information. Although algorithms have been developed based on the fusion methods we present in this paper
to deal with this multi-counting issue, such a discussion is outside of the scope of this paper.

Most of the sensor systems we have discussed so far provide kinematic, as well as attribute information.
Hence, every track has an associated kinematic estimate. See, for example, [1] for a description of how such a
kinematic estimate may be derived. The maximum altitude and velocity that a variety of platforms can achieve is
available in the form of mission data. These maximum values can be used to mask out those platforms that cannot
possibly represent the target associated with a given track. That is, if track T has velocity vt, then platform p, which
has a maximum velocity tp vv < , clearly cannot be a candidate platform for track T. Although, strictly speaking,
such an inference does not represent sensor data in the conventional sense, we list it here as a source of attribute
information, and refer to it as contextual data. The mechanism for masking out non-viable candidates makes use of
algorithms similar to those presented later in this paper.

Fundamentally, we note that regardless of the sensor subsystem, platform lists take one of two forms; they
are either ambiguous lists of platforms, each of which has associated with it a confidence between 0 and 100, or they
are ambiguous lists free of any associated confidence. We can generalize this even further by assuming that when
no confidences are provided, every platform in a platform list has the same confidence. Hence, based on the sensor
suite we have introduced in this section, we can assume that the type of evidence we are concerned with is of the
form (){ }1000,|, ≤≤∈ iiii cpcp P , where P is the set of all platforms in the universe of discourse.

3.0 THE CANDIDATE ALGORITHMS

In this section we provide a theoretical description of the two algorithms we are analyzing in this paper.
We begin by briefly reviewing the Dempster-Shafer method of fusion. Assuming that all evidence to be fused is of
the form described in the previous section, our first task is to derive a belief function from any given piece of
evidence. Given a belief function, fusion of evidence proceeds according to Dempster’s Rule of Combination. We
describe the process of normalization and the pitfalls associated with such an operation. Finally, we describe the
process of deriving a metric that measures the correctness of the correlation of a report with a track. This metric is a
by-product of the Dempster-Shafer calculus.

We then proceed to a theoretical description of the scoring method. An additive process is employed in the
fusion of evidence under this method. Associated with this additive process is the concept of the knowledge point, a
theoretical point at which we can assume that enough evidence has been accumulated to begin the process of
convergence to a single unambiguous platform. Convergence to a less ambiguous platform list is achieved via the
process of pruning. Finally, although there is no clear by-product of the fusion process under this algorithm that can
act as a measure of the correctness of correlation, we can derive such a metric. A description of a proposed metric is
provided.

3.1 THE DEMPSTER-SHAFER CALCULUS

The precepts of the Dempster-Shafer Calculus (also referred to as Evidential Reasoning) are fairly well
established in the domain of ID fusion. Here, we will give a cursory overview of the method.

As a preliminary to our discussion, let us fix the types of objects that we can observe in our universe. Let
us refer to this set of objects as the frame of discernment. The frame of discernment is denoted by

{ }nxxx ,,, 21 �=θ , where the various ix are labels for the types of objects perceptible in the universe. In our case,
the perceptible objects are friend and foe platforms of various types.

Let us say we are given some sort of a proposition P, in this universe. It is our task to determine the
veracity of the proposition (In our specific context, the proposition we are most interested in say iP , is of the form
“Is the true ID of the observed target platform ip ?”). Let us say, based on some sort of a priori knowledge
database, we have determined that the possibility that iP is true is given by some number y. Let us further restrict
the domain of any such y to the real valued unit interval []1,0 . Let us, therefore, denote the possibility of iP being
true as () yPp i = . How we derive the possibility for a given proposition is a function of the environment in which
we are trying to implement Dempster-Shafer fusion. In the hypothetical environment we have constructed, the
derivation of possibility is a straightforward matter. First, let us assume that with each sensor we have associated
some trust factor it , such that 10 ≤≤ it . This weight provides a measure of how much we trust the attribute data
returned by the sensor. If we trust the data from a sensor absolutely, the trust factor associated with the sensor will
be 1.0. If we half trust the data, the trust factor is 0.5 (and so on). Given a platform ID that consists of platform
confidence pairs, derived from a sensor with trust factor it , we declare the possibility of any given platform ()jPp ,

to be the product ji ct , where jc is the confidence placed on the platform jP .
It is important to emphasize that a possibility is not a probability. The summation of possibilities over an

ambiguous set is not necessarily 1.0. In fact, in the majority of instances it is not 1.0. The possibility of an object
being of type P is independent of the possibility of the same object being of type Q. In the Dempster-Shafer theory,
the notion of a belief function is approximately analogous to the probability density function in probability theory.
The difference between the two concepts lies in the notion of the assignment of belief mass (analogous to
probability) to a set of object types, rather than to a single object type. In many situations, we may be able to say
with some certainty that the type of an observed object is to be found in some set { }rPPP ,,, 21 � . But we may not
be able to say with as much certainty that the object type is in the set { }rPPP ,, 52 , for example, or in the set { }iP .
And so, we assign a larger amount of belief mass to the first set than the other two sets. A set to which we assign

belief mass is referred to as a focal element. Given focal elements mFF ,,1 � , a belief function is a set of mass
assignments

()
()

() mm mFm

mFm

mFm

=

=
=

�

22

11

Such that 0.11 =++ mmm � . Note that unlike possibilities, the masses on the focal elements of a belief
function sum to 1.0. The question that we tackle next is given a possibility assignment arising from an ambiguous
set, how do we create a belief function? In the next section, we describe a method of construction that is relatively
straightforward and easy to understand.

3.1.2 CONSONANT BELIEF FUNCTION CONSTRUCTION

Given a set of platform possibility pairs, say () (){ }rr pPpP ,,,, 11 � how do we construct a belief function?
To begin with, let us assume, without loss of generality, that rppp ≥≥≥ �21 . First of all, the domain of
possibility is defined as []1,0 , as is the domain of belief. rPP ,,1 � can be thought of as being at least rp possible.
Certainly 11 ,, −rPP � may be more than rp possible. But they are at least rp possible. So, we write our belief in
the focal element rPP ,,1 � is rp , or { }() rr pPPm =,,1 � (Here, rp is called the belief mass on the focal element

rPP ,,1 �). Similarly, 11 ,, −rPP � are at least 1−rp possible. But note that rp of this total possibility of 1−rp has
already been accounted for in the last assignment of belief. So, we write { }() rrr ppPPm −= −− 111 ,,� . Continuing
on, we say 21 ,, −rPP � are at least 2−rp possible, but 1−rp of this possibility has already been accounted for. So
we write { }() 1221 ,, −−− −= rrr ppPPm � . If we continue this process, we get the following set of assignments.

{ }()
{ }()

{ }()

() 1

11

3221

211

1

,,

,

pm

ppPPm

ppPPm

ppPm

iii

−=

−=

−=
−=

+

θ
�

�

�

The final assignment above may not make much sense as it is shown. Note that the first r assignments
proceed as discussed above. If we sum up the belief masses for the first r assignments, we find that the sum totals to

1p . Since we would like the belief function to total to 1.0, we have 11 p− mass left over, after the first r

assignments. In the absence of any further information on how to distribute this belief mass, we assume that this
quantity of belief mass represents our ignorance of the truth. This much mass is thus associated with the full
universe of discourse, which, in our case, is the frame of discernment θ .

Belief functions that fit this template are called Consonant Belief Functions (CBF). [5] provides a look at a
variety of different types of belief functions including the CBF. The CBF is ideally suited for applications where
throughput cannot be expended liberally for the purposes of belief function construction. More rigorous methods,
such as conditional embedding can be utilized to derive belief functions containing larger numbers of focal
elements.

3.1.3 DEMPSTER’S RULE OF COMBINATION AND EVIDENTIAL CONFLICT

Fusion, in the Dempster-Shafer Calculus, occurs at the belief function level. Given two belief functions,
1m and 2m , we can derive a fused belief function from these two by applying Dempster’s Rule of Combination.

Given two belief functions of the form

()
()

() nn mFm

mFm

mFm

111

12121

11111

=

=
=

�

()
()

() mm mFm

mFm

mFm

222

22222

21212

=

=
=

�

Dempster’s Rule creates a new fused belief function, where for every iF1 , and jF2 , a new focal element is

formed of the form () jiji mmFFm 2121 ×=∩ . After all such products are computed, if a focal element appeared
multiple times in the computations, all of the masses assigned to it are summed together and assigned to the focal
element. We face an inherent risk, however, in performing such a computation. The risk arises from the fact that
we may have ∅=∩ ji FF 21 . But what does assignment of belief mass to the null set really mean? The null set only
arises when there are no common elements between two focal elements being fused together. This means the null
set only arises when we are trying to combine together two pieces of information that support different conclusions.
That is, the null set indicates the presence of contradiction in the evidence being fused together. In other words, the
total mass on the null set, in a belief function indicates the level of conflict in our evidence.

3.1.4 CONFLICT NORMALIZATION, ZADEH’S PARADOX AND SCORING ID
CORRELATION

It is fairly easy to see that as we perform fusion via Dempster’s Rule our belief mass on the conflict focal
element can only grow. This leads to some unfortunate attempts at removing conflict from the picture altogether.
The most frequently used technique for this purpose is conflict normalization. In brief, conflict normalization
attempts to redistribute belief mass assigned to the null set, by dividing the mass on every focal element by the
quantity ()∅− m1 . In extreme cases, this can lead to the well-known Zadeh’s Paradox. To illustrate this paradox,
consider two belief functions to be fused together.

{ }()
{ }() 05.0

95.0

1

1

=
=

Cm

Am { }()
{ }() 05.0

95.0

2

2

=
=

Cm

Bm

Dempster’s Rule gives us
()
{ }() 0025.0

9975.0
=
=∅

Cm

m

If we normalize this belief function by dividing the focal elements by () 0025.01 =∅− m , we get the
following outrageous result.

{ }() 0.1=Cm

Although very little of the evidence seems to support C as the correct conclusion, normalization leads us to
conclude that the ID must be C! Instead of trying to remove conflict from a belief function, it may be wiser simply
to accept it. Indeed, when we try to correlate attribute data against a tracked object, we often end up fusing the new
attribute data with the attribute data that has cumulatively developed on the track. In doing such a fusion, we would
like to gain some measure of the accuracy of correlation in ID space. The conflict associated with a fused result can
aid us in determining whether we have correctly correlated the new attribute data to the track. The measure

()∅− m1 is a real-valued quantity bounded by the interval []1,0 . As the conflict in data being fused together
increases, the measure moves toward a value of 0. The more consistent the evidence is, the closer the measure will
be to 1.

3.1.5 PIGNISTIC MEASURES

One of the chief attributes of the Dempster-Shafer method that distinguishes it from a Bayesian method is
the fact that belief mass is distributed across sets of candidate IDs, rather than on a specific ID. At some point in the
process of tracking an object, we usually are faced with the dilemma of decisively declaring a single ID for the
object. Unfortunately, given a belief function, it is not always easy to determine the best ID of the tracked object.
The description of a tracked object’s ID at the level of a belief function is referred to as a Credal measure of the ID.
We need a measure at the decision level, rather than at the credal level. Such measures are called Pignistic
measures.

The classical Pignistic measure is Pignistic Probability (see [4], for example). Given a belief function, the
Pignistic Probability of a specific platform, say ip is defined to be

() ()
�
∈

=
ji Fp j

j
i

F

Fm
pPr

In the above, the jF are the focal elements of the belief function, m, and jF denotes the cardinality of the

focal element. The Pignistic Probability is bounded by two other pignistic measures, the support and plausibility
measures.1 The support for a platform ip is defined as follows

() ()�
=

=
ij pF

ji FmpSup

The definition we have given above is a more specific instance of a general definition of support, which can
be constructed for arbitrary sets of platforms. See, for example, [5]. The plausibility of a platform can be thought of
as ()ipSup1− , if we use the more general definition of support that is found in [5]. A more rigorous definition for
plausibility is shown below.

() ()�
∈

=
ji Fp

ji FmpPl

It is not difficult to see that for any given platform ip , we have () () ()iii ppp PlPrSup ≤≤ . The support
plausibility interval therefore, can be thought of as a definitive measure of how much a belief function supports a
particular platform.

3.2 THE AD-HOC SCORING METHOD

Figure 1 below gives an overview of how this algorithm proceeds. Each of the sensor types we discussed
in section 2 has associated with it some weight, just as it did in the Dempster-Shafer method. However, the domain
of values for these weights is significantly different in this method. Let us assume that a report platform ID is
similar in form to the platform confidence pairs introduced in section 2 ((){ }1000,|, ≤≤∈ iiii cpcp P), with the
exception that the confidence is replaced by a weight. This weight is dependent not only on the value of the

1 There is some variation in the terminology here. Occasionally, what we refer to as a belief function is referred to
as a Basic Probability Assignment and what we refer to as support is referred to as a belief function.

confidence associated with a particular platform, but also on the specific sensor that is reporting the evidence. A
weight is not constrained by the interval [0,100] as a confidence is. Instead, a weight is essentially unbounded. A
qualitative way to think about this concept is to tie the magnitude of the weight to the amount of trust we place in the
sensor that is reporting the evidence. Suffice it to say that the evidence we are interested in fusing can be altered to
match the form () (){ }nn wpwp ,,,, 11 � , where the iw represent weights.

Platform
Initialization

ID Post
Processing

+

Track

Sensor
Measurement

Report
PID

Track
PID

New
Track
PID

Figure 1: Overview of the Ad Hoc ID Fusion Algorithm.

Given two platform IDs, say () (){ }nn wpwppid 11111 ,,,, �= and () (){ }nn wpwppid 22112 ,,,, �= , we can
combine the evidence contained in these two platform IDs by simply adding together the evidential weights that
correspond to the same platform. Hence, we may say that the fused ID result is given by

(){ }2121 |, wwwwppidpidpid iiiif +==⊕= . Given j distinct platform IDs we generalize this notation to

()
��

�
�
�

��

�
�
�

=== �⊕
==

j

k
kiiiik

j

k
f wwwppidpid

11

|, . Note that we assume that the cardinality of any platform ID is n. That

is, any platform ID consists of exactly n ordered pairs, where we have a total of n platforms. We stress that some
belief weights may have a value of 0.

What we have suggested so far is a very simple methodology for combining two platform IDs: we simply
add up their weights. If there is some inconsistency inherent in the two pieces of evidence, we accept either
interpretation. For example, if 1pid places a lot of weight on platform xp , say xw1 and 2pid places weight xw2

on the same platform, where xx ww 21 >> , the method of fusion we have discussed so far will include a large non-
zero weight on xp (specifically the weight will be xx ww 21 +). Let us denote the fact that platform xp is supported
by a platform ID, ipid by ix pidp ∈ , where we say ix pidp ∈ iff ixw is large. But what is large? Since this is a
subjective question, whether ix pidp ∈ or ix pidp ∉ is a fuzzy truth-value. But suppose we define ()Pδ as the

degree to which the proposition P is true. Then, we may write () () xxxx wwpidppidp 2121 >⇔∈>∈ δδ . We
further require that ixix pidpw ∉⇔= 0 .

Now, in terms of this notation, we can say that kkk

j

k
fx pidpkpidpidp ∉∀⇔=∉ ⊕

=

,
1

. That is, as long

as xp is supported by one of the platform IDs being fused, it will be supported by the fused result. But, this is a
very liberal definition of fusion. As long as a platform is declared a possibility by one of the platform IDs being
fused, it remains a possibility in the fused result. This is borne out by the fact that for any k,

() ()kxfx pidppidp ∈≥∈ δδ .

We can now take the opposite tack in constructing another fusion algorithm. Let us say that given two
platform IDs, a platform is supported in the fused platform ID iff it is supported in both constituent platform IDs.
So, given two platform IDs 1pid and 2pid , we define (){ }2121 |, wwwwppidpidpid iiiif �==⊗= , where

0,

0
2121

21 { ≠+
= iiii

ii

ww

Otherwise

ww
ww �

As with the previous algorithm, we generalize our notation for fusion of j platform IDs as follows.

()
��

�
�
�

��

�
�
�

===
==

⊗ ki

j

k

iiik

j

k
f wwwppidpid �

11

|,

Under this definition of ID fusion, we have kkk

j

k
fx pidpkpidpidp ∈∀⇔=∈ ⊗

=

,
1

. That is, in order for

the fused result to support a platform xp , every platform ID that is being fused must support xp . It is readily
apparent that this definition of fusion is essentially complementary to the first ID fusion operation and that it is a
much more restrictive form of fusion. A platform is part of the fused result iff it is a part of every constituent piece.

3.2.1 THE KNOWLEDGE POINT AND THE PRUNING THRESHOLD

We have given two examples of how platform IDs can be fused together to produce a unified result. The
two methods we have illustrated represent the two extremes of potential approaches to the problem. In the first
method, we were very permissive, allowing all potential conclusions supported by any constituent piece of evidence
to be supported by the fused result. In the second method, we were very restrictive, requiring that the potential
solutions supported by the fused platform ID be supported by every constituent piece of evidence. We now attempt
to find the middle ground of the process.

To do so, we realize that the process of accumulating ID evidence is a continuous one in more than one
sense. Our level of ignorance of the true ID of the observed target, if such a measure can be quantified in terms of
percentages, begins at 100%. At each step, accrual of new ID evidence drives this percentage down. In the ideal
situation, we would like our ignorance to be identically zero at the end of the process. In reality, we can never be
sure whether true ID matches our computed ID. There is always a chance, albeit small, that we may have derived
the wrong conclusion on the ID of the observed target. Hence, ignorance asymptotically approaches zero, as we
accrue evidence, in the best case. In worse cases, if platform IDs remain diffuse, the ignorance level of the ID of the
observed object will asymptotically approach some non-zero value. For example, if the only ID we receive is one
derived from a CNI source (notoriously ambiguous) that is ambiguous between a large number of platforms, our
ignorance level will not asymptotically approach zero. Instead, we shall always be ignorant between the platforms
this single sensor type returns. In the worst case, obviously, our ignorance remains at 100%. This case arises if we
have a sensor that is malfunctioning or performing very poorly (and thus not being able to eliminate any platform in
the universe of discourse). The graph in Figure 2 below illustrates this point.

Ignorance
%

Time

Ideal Case

Best Case

Diffuse ID Case

No ID Case

Figure 2: Plot of Ignorance vs. Time for Various Cases.

Just as our level of ignorance is a continuous variable that hopefully drops over time, our willingness to
allow alternative hypotheses on the true ID of the observed object should be a continuous variable. At the beginning
of the process, since we have very little evidence to support any one conclusion, we may be very permissive in
allowing multiple potential conclusions to be part of the fused solution. However, as we accrue evidence, our ability
to discern an incorrect hypothesis grows, and we become less and less permissive about which platforms should be
allowed to be part of the fused ID.

This line of reasoning suggests that we use a fusion algorithm that is a hybrid of the two approaches that we
have discussed so far. Let us consider again the structure of a platform ID, () (){ }nn wpwppid ,,,, 11 �= , associated
with a tracked object. If we consider pid to be a collection of hypotheses about the true ID of the object that is being
tracked, then any given xp is associated with the proposition that the true ID of the object being tracked is the
platform xp . Our belief in this proposition is represented by the belief weight xw . While () xx wpidp =∈δ for
all xp is relatively low, we say that pid is in an open world assumption. This is equivalent to saying that we will
not discourage or deny the introduction of alternative hypotheses into pid while ()pidpx ∈δ is low for all xp .

Let us define the Knowledge Point as the point in time when we disallow the introduction of new
propositions into pid. Let us say that we associate some belief weight KptW with the Knowledge Point. In order for
us to disallow the introduction of new propositions into pid (this process of disallowing new propositions is called
the closed world assumption and pid is said to be mature when this point is reached), we must have at least one x
such that () Kptx Wpidp ≥∈δ . Once we meet this condition, we have made the fundamental assumption that the
true ID of the tracked object is one of the platforms that is contained in the platform ID pid. Thus, our task now
becomes to eliminate as many of the propositions from pid as possible.

Let { }() xn www =,,max 1 � . Since we are assuming that we are in the closed world assumption, we have

Kptx Ww ≥ . Let us say that if pid supports a candidate platform with a weight that is within some W∆ of xw , we
retain the candidate platform. Otherwise we prune away the candidate platform from contention. Pruning away a
platform entails dropping its belief weight to 0. We refer to W∆ as the pruning weight. The process of pruning is
shown in the figure below. As the diagram illustrates, pidFEA ∈,, , but ()pidFEA Prune,, ∉ .

Weight

Platforms
Weight

Platforms

 A B C D E F G

 A B C D E F G

xw

xw

Wwx ∆−

Wwx ∆−

Platforms A, E and F pruned away.
Platforms B, C, D and G remain
candidates.

Figure 3: Pruning a Platform ID that has Reached the Closed World.

3.2.2 SCORING THE COMPATIBILITY OF TWO PIDS

While maintaining a fused ID on a target of interest, we would like in general to fuse platform IDs that are
consistent with each other. That is, if, on a track, we have a cumulative fused ID indicating a preference for
platform xp , and we receive evidence from a sensor source that indicates a preference for a platform other than

xp (say yp), we should be able to detect that the two platform IDs are incompatible and thus, probably, should not
be fused together.

One way to construct a metric that captures this type of contradiction in the evidence is to consider the two
extreme types of fusion algorithms we have discussed above. Before we discuss how these two algorithms might
help, we state here that for all platforms ip , () ()2121 pidpidppidpidp ii ⊕∈≤⊗∈ δδ . Given platform IDs

1pid and 2pid , if we take () 121max wpidpid =⊕ and () 221max wpidpid =⊗ , for pruning purposes, we have
two separate points from which to view the pruning test. But given the ordering on these two fused results, we
conclude that 12 ww ≤ . If the platform with the most support in 21 pidpid ⊗ would be pruned out in 21 pidpid ⊕ ,
we can say that the two platform IDs are incompatible. That is, if Www ∆−≤ 12 (i.e. the platform corresponding to

2w would have been pruned out of 21 pidpid ⊕), then we can say that the two platform IDs are incompatible.

Simplifying Www ∆−≤ 12 , we have that the two platform IDs are incompatible iff 0.121 ≥
∆
−
W

ww
. If we

impose the restriction that our metric must return 1.0 when the two platform IDs are a good fit and some number

less than 1.0 if they are not, we can rewrite the above as 01 21 ≤
∆
−

−
W

ww
if the two platforms are incompatible.

Otherwise, if the two platforms are compatible to some degree, we have 110 21 ≤
∆
−

−<
W

ww
. The degree to which

we require the platform IDs to be compatible is a subjective matter, dependent on the application to which this
metric is being applied. Intuitively, it is easy to see that the two platform IDs are perfectly compatible iff 21 ww = .

It is also fairly easy to see that the metric has a negative value if the maximally supported platform in
21 pidpid ⊗ would have been pruned away in 21 pidpid ⊕ . The metric is identically 0 if the maximally supported

platform in 21 pidpid ⊗ is exactly W∆ less than the maximally supported platform in 21 pidpid ⊕ . The metric is
positive if the maximally supported platform in 21 pidpid ⊗ would not have been pruned away in 21 pidpid ⊕ .

3.2.3 PULLING TOGETHER THE COMPLETE ALGORITHM

So far, we have described the various pieces of the variant scoring based fusion algorithm. In this section,
we will bring together all of the pieces of the algorithm that we have discussed.

Given two platform IDs 1pid and 2pid , that we want to fuse together, we begin by calculating the two
extreme fusion values 21 pidpid ⊗ and 21 pidpid ⊕ . If neither of the platform IDs is mature, we calculate the
compatibility score of 21 pidpid ⊕ and return this liberal fusion result along with the compatibility score as the
output of the fusion process. The rationale again, is that we want to be as permissive as possible, initially, to allow
as many potential platforms as possible to be included in the candidate list. Once maturity is reached, we can prune
away unlikely candidates.

If either of the platform IDs is mature, we see if there are any platforms that are supported by 21 pidpid ⊗ .
If no such platforms exist, we can assume that the two IDs are incompatible and return a compatibility score of 0.
Otherwise, we have a fused result that is in the closed world. We prune the platform ID 21 pidpid ⊕ , using the
weight of the maximally supported platform in the platform ID 21 pidpid ⊗ . If 1pid and 2pid are compatible, it
stands to reason that the maximally supported platform in 21 pidpid ⊕ and 21 pidpid ⊗ are identical. As a result,
those platforms with a low degree of support in 21 pidpid ⊕ will be pruned away.

On the other hand, if we have the fusion of two incompatible platform IDs, the maximally supported
platform in 21 pidpid ⊗ (say 1p) will be different from the maximally supported platform in 21 pidpid ⊕ (say 2p).
Further, we can say that () ()212211 pidpidppidpidp ⊕∈<⊗∈ δδ , and thus, if we prune by the weight on 2p ,
we run the risk of pruning out the platforms that are in common between 1pid and 2pid . Therefore, we prune
using the weight on 1p instead. We let the compatibility score drive the decision on whether to accept or reject the
fusion of these two platform IDs. The compatibility score and the pruned result are returned as the output of the
fusion.

An example of how fusion of a mature platform ID and an immature platform ID proceeds is shown in the
figure below. In this figure, we show the fusion of a platform ID that has been developing on a track, and a platform
ID derived from a sensor report.

⊗
Pl

at
 1

Pl
at

 2
Pl

at
 3

Pl
at

 4
Pl

at
 5

Pl
at

 n
… Pl

at
 1

Pl
at

 4

Pl
at

 n
…Pl

at
 2

Pl
at

 3

Pl
at

 5

Pl
at

 1

Pl
at

 3

Pl
at

 5

Pl
at

 n

Pl
at

 1

Pl
at

 3

Pl
at

 5

Pl
at

 n

Pl
at

 1

Pl
at

 3

Pl
at

 5

Pl
at

 n

Pl
at

 2

Pl
at

 4

…Pl
at

 2

Pl
at

 4

…

Pl
at

 2

Pl
at

 4

…

500 600 1000 100 100 100

700 100 100500 700 1000

500 700 1000

Pruning

Track PID Report PID

Strict Fusion Liberal Fusion

()⊗max

Assume Delta W is 500

⊕

Figure 4: An Example of the Complete Ad Hoc Fusion Algorithm.

4.0 TESTING METHODOLOGY AND SCENARIO DESCRIPTION

In this section we will describe our analysis tools and environment, as well as the specific scenario on
which we are demonstrating the performance of the two algorithms discussed in this paper.

We tested the Dempster-Shafer and Ad Hoc methods by embedding these algorithms in a larger simulation
of an actual fighter program’s sensor fusion system. This larger simulation, coded in Mathematica, is hosted on both
PC and VAX workstations. Specifically, we were interested in the performance of these algorithms in the context of
a pre-scripted scenario that was fairly dense with friend and foe platforms. The scenario we ran against is
summarized in the chart below.

30

2629

25

15

1
27

28

14
13

17

21

9
8

7 6

11
5

2

1112

24

16

3

12

18

N

0 nmi
i

✻

20 nmi
i

100 nmi
i

0 nmi
i

23
20
22
19

4
5

Figure 5: A Graphical Description of Target Paths in the Test Scenario.

In this figure, ownship is marked with the number 1. The remaining air targets in the scenario are marked
with numbers from 2 to 25. Ground targets are marked with boxes, and enumerated from 26 to 30. Air targets are
denoted by arrows that indicate their heading. There are three major formations in this scenario that are of interest.
Four enemy fighters move in a cap formation northwest of ownship and are enumerated from 6 to 9. A long
corridor of disparate friendly platforms (numbered 2, 19, 22, 20, etc.) head toward ownship. A third much smaller
corridor of mixed friendly/foe platforms maneuver to the northeast of ownship (13, 14, 15, 24, 25). In this paper, we
will only analyze the performance of our algorithms on the large corridor of friendly platforms heading towards
ownship. A study of this feature of the scenario is instructive, because of the kinematic characteristics of this
corridor. We elaborate on this below. Such conditions make it possible to somewhat isolate the performance of ID
on this set of targets.

It is also significant to mention that the results shown in the subsequent section assume that the Dempster-
Shafer algorithm rejects all reports that do not correlate with a metric score of 0.85 or greater. The ad hoc method is
a lot more liberal, allowing anything with a non-zero metric score value to update a fused result.

Broadly speaking, there are two ways to judge the performance of an algorithm; how quickly does the
algorithm execute and how “good” is the result of the algorithm in providing correct ID. The first of these questions
is fairly easily answered. Timing tests on the two algorithms, running on the PC, indicated that both completed
executing the described scenario in about the same amount of time. Below we are going to be discussing the results
we received on one particular, fairly typical run. In the run we discuss, the Dempster-Shafer approach took slightly
less time (~91.3% of the time it took to run the ad hoc method). However, in other circumstances, the Ad Hoc
method beat out the Dempster-Shafer run by similar figures. It is, therefore, difficult to declare one algorithm faster
than the other. Factors such as other processes running on the machine, platform type (i.e. PC or DEC) and medium
of program (i.e. Mathematica) may contribute to variability in the speed performance of these algorithms.

The other side of the question is how well did the two algorithms do in determining ID? We show
performance of our two algorithms, in this regard, on system tracks created during the execution of the scenario via
graphs of the type shown in Figure 6 below. This graph shows that our mission database consisted of platforms
enumerated contiguously from 1 to 55. These are shown on the y-axis. Along the x-axis, we show the scenario
time. At a given time, a point on the chart indicates the presence of the corresponding platform in the platform ID
for the track associated with the graph. The strength of the point indicates the degree to which the platform ID
supports the platform (i.e. does the platform have a lot of weight or belief mass, or does it have very little?). The
white space between platform ID points indicates that no new evidence in the form of sensor attribute data has been
received to change the platform ID. For example, in the figure below, no new evidence has entered the system
between time unit 800 and time unit 1125. Therefore, during this period of time, we can conclude that there has
been no change in the platform ID on this track. The header of the figure indicates that we are looking at
performance for a system track on target 2, as shown above in the scenario description, and that the system has
allocated the number 25 for this track.

Given a stream of attribute data, if we make the assumption that we absolutely believe every single piece of
evidence, we can define the “True ID” value as the intersection of the sets of platforms each piece of evidence
supports. Returning to our definition of a platform ID supporting a platform described in section 3.2
(0>⇔∈ ii wPIDp), given a stream of platform IDs, let the True ID set be the set of platforms that is supported
by every one of the platform IDs (given n Platform IDs, the True ID set is { }nkPIDpp kii ,,1,| �=∀∈). Those
platforms that make up the true ID set are shown in the graph using the shaded boxes. As we would expect, over
time, the cardinality of this set decreases. In the graph shown, the cardinality actually drops down to 1 around time
unit 110.

20 40 60 80 100 120 140
Time

5

10

15

20

25

30

35

40

45

50

55

Platform
Ambiguity

TRUE ID
FUSION ID

Track ID History: Track 25, Target 2

Figure 6: ID Performance of Track 25 (Target 2) in Dempster-Shafer Run.

5.0 ANALYSIS RESULTS

Figure 6 above shows performance of the Dempster-Shafer algorithm in tracking target 2. As the graph
illustrates, by time unit 120, the ID on the track has been narrowed significantly. In fact, the only platform with any
significant weight is the one that corresponds to the true ID. With ownship heading of 0o, Target 2, as our scenario

description indicates, is part of the long train of targets with heading 180o (i.e. they are on a path directed towards
ownship). Given the relative kinematic ambiguity in angle measurements along the line of sight connecting ownship
with the train of targets, we have to rely on ID scoring to differentiate the various targets. The Ad Hoc method
displays a deficiency in this regard. Whereas the Dempster-Shafer method is able to differentiate the target on the
basis of ID, and create a separate track within 60 time units, the Ad Hoc method is only able to pick up the target
much later in the scenario.

The ID platform ambiguity of the track it forms on the target is shown below in Figure 7. As we see, this
track does not form until about 700 time units into the scenario. Further, it is not able to gather enough information
to narrow down the ID to a single platform. It makes some progress towards this goal between time unit 1000 and
time unit 1200. However, due to a loss of information around time unit 1200, it is unable to sustain this movement.
By the end of the run, it returns a platform ID list that is ambiguous between a large number of platforms. But this
cannot be considered a huge advantage for the Dempster-Shafer method. The reason is that a similar track also
forms for this method around the same time. Whether this new track exists concurrently with track 25 above, or
whether track 25 is dropped (this can happen because of the lack of any new data over a period of time) causing a
new track on target 2 to form at a later time, the same problem arises in both methods.

The difficulties of using the scoring mechanism of the Ad Hoc method to differentiate targets on the basis
of ID alone are illustrated again by the tracking of target 3. While the Ad Hoc method was able to eventually create
a track on target 2, it failed altogether in tracking target 3. The Dempster-Shafer method, on the other hand, worked
quite well, as illustrated in Figure 8. Within 450 time units, the Dempster-Shafer method had correctly identified the
target. By time unit 650, the ambiguity of the ID drops to 1.

200 400 600 800 1000 1200 1400
Time

5

10

15

20

25

30

35

40

45

50

55

Track ID History: Track 53, Target 2

Platform
Ambiguity

TRUEID
FUSIONID

Figure 7: ID Performance of Track 53 (Target 2) in Ad Hoc Scoring Run.

The permissive nature of the scoring in the Ad Hoc method leads not only to problems with targets going
undetected, but also with miscorrelation of data. Consider Figure 9 below which shows the performance of the Ad
Hoc scoring method on target 16. Because of the kinematic ambiguity of the situation under consideration, sensor
reports gate incorrectly to tracks using just kinematics. Since the scoring is very permissive in ID as well, any track
that gates with a sensor report in kinematics, and has even one platform in common with the report’s platform ID,
will successfully attract the report. The tracking on target 16 shows this difficulty clearly. Reports that do not truly
belong to a target track can hijack the track easily, as this case illustrates. By 180 time units, the ID on the track

does not reflect the True ID of the target being tracked. This problem, quite clearly, does not arise in the context of
a Dempster-Shafer run, as the track on the same target using Dempster-Shafer clearly indicates in Figure 10.

Given these results, it would seem that on this scenario run the Dempster-Shafer method seemed to perform
somewhat better than the Ad Hoc method. However, it would be imprudent to conclude definitively, at this stage of
analysis that the Dempster-Shafer method is the better overall algorithm. Further study and analysis needs to be
performed to reach any such definitive conclusion.

50 100 150 200 250 300 350 400 450 500 550 600 650
Time

5

10

15

20

25

30

35

40

45

50

55

Platform
Ambiguity

TRUE ID
FUSIONID

Track ID History: Track 37, Target 3

Figure 8: ID Performance of Track 37 (Target 3) in the Dempster-Shafer Run.

20 40 60 80 100 120 140 160 180
Time

5

10

15

20

25

30

35

40

45

50

55

Platform
Ambiguity

TRUE ID
FUSIONID

Track ID History: Track 7, Target 16

Figure 9: ID Performance of Track 7 (Target 16) in the Ad Hoc Scoring Run.

200 400 600 800 1000 1200
Time

5

10

15

20

25

30

35

40

45

50

55

Platform
Ambiguity

TRUE ID
FUSIONID

Track ID History: Track 6, Target 16

Figure 10: ID Performance of Track 6 (Target 16) in the Dempster-Shafer Run.

6.0 SUMMARY

Given the interim nature of the analysis presented in this paper, we have pointed out the areas in which the
Dempster-Shafer algorithm seems to work better than the present Ad Hoc scoring method being employed on the
present algorithm. In all fairness, we should note that the Ad Hoc scoring method does work just as well on slightly
simpler scenarios. Even in the context of the scenario discussed in this paper, the performance on the cluster of
targets formed by targets 6 through 9 is almost identical in the Dempster-Shafer and the Ad Hoc Scoring runs.
There are other aspects to consider as well, which may contribute to better performance for the Dempster-Shafer
method. We are using a fairly restrictive scoring metric in the case of Dempster-Shafer, whereas the scoring metric
for the Ad Hoc method is highly permissive. Since the Ad Hoc method is more commonly used on high
performance fighters, we have not changed the accept/reject value of the metric already in the simulation. The
performance of the Ad Hoc method may improve if we change this accept/reject value to something that is less
permissive. A thorough analysis on the optimal value for the scoring metric for both methods should be performed
before a final judgment is made on the best algorithm for the application.

ACKNOWLEDGEMENTS

We would like to acknowledge Michael Smith and Gary Fogle of the Air Force Research Laboratory at
Wright Patterson Air Force Base, for encouraging the exploration of alternative fusion algorithms. We would also
like to express our gratitude to the members of the Boeing Multi-Sensor Fusion Analysis and Sensor Track Fusion
groups for their encouragement and support for the completion of this work.

REFERENCES

1. F. W. Cathey and M. Munoz. Proc. IRIS Sensor & Data Fusion, 1998. Vol. 1, pp. 115-128.

2. R. Loo. Identification Algorithms. ID Appendix to Program SDAR, 1999.

3. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, 1976.

4. P. Smets. Constructing the Pignistic Probability Function in a Context of Uncertainty. Uncertainty in Artificial
Intelligence 5 (Eds. M. Henrion, et al). Elsevier, 1990. pp. 29-39.

5. R. R. Yager. Entropy and Specificity in a Mathematical Theory of Evidence. Int. J. General Systems, 1983. Vol.
9, pp. 249-260.

